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High-speed incompressible flow past a thin airfoil in a uniform stream is considered.
When the angle of attack for a solid airfoil exceeds a certain critical value, the
boundary layer in the leading-edge region separates in a process known to lead to
dynamic stall. Here suction near the leading edge is studied as a means of controlling
separation and thereby inhibiting dynamic stall. First, steady boundary-layer solutions
are obtained to determine the nature of suction distributions required to suppress
separation on an airfoil at an angle of attack beyond the critical value (for a solid
wall). Unsteady boundary-layer solutions are then obtained, using a combination of
Eulerian and Lagrangian techniques, for an airfoil at an angle of attack exceeding
the critical value; the effects of various parameters associated with the finite-length
suction slot, its location and the suction strength are considered. Major modifications
of the Lagrangian numerical method are required to account for suction at the wall.
It is determined that substantial delays in separation can be achieved even when the
suction is weak, provided that the suction is initiated at an early stage.

1. Introduction
Dynamic stall is a term used to describe a process in which flow separation occurs

on an airfoil oriented at a sufficiently high angle of attack in a uniform flow. Different
types of stall have been identified in the past (see, for example, McCullough & Gault
1951; McAlister & Carr 1979; Currier & Fung 1992) but the most important type
for thin airfoils occurs in the leading-edge region (Currier & Fung 1992; Acharya
& Metwally 1992; Shih et al. 1992; Shih, Lourenco & Krothpalli 1995) when the
flow is at high Reynolds number Re. Leading-edge stall is generally preceded by
laminar boundary-layer separation near the airfoil nose. At high Re, separation is
a strongly interactive event wherein the boundary layer erupts from the surface in
a sharply focused narrow plume; the onset of this process was first identified by
Van Dommelen & Shen (1980, 1982) and subsequently described by other authors
(see, for example, Cowley 1983; Elliott, Cowley & Smith 1983; Peridier, Smith &
Walker 1991; Cowley, Van Dommelen & Lam 1990). Doligalski, Smith & Walker

† Professor Walker passed away in March 2004.
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(1994) argue that leading-edge separation initiates the dynamic stall process in which
a vortex is quickly created above the upper surface of the airfoil. While the stall vortex
is resident above the airfoil, significant increases in lift are experienced, compared
to the steady-flow maximum value (Ham 1968; Francis & Keesee 1985). However,
this extra lift is normally short-lived since the stall vortex induces a second separa-
tion process in the boundary layer near mid-chord that quickly leads to detachment
of the vortex. As the stall vortex convects into the airfoil wake, a substantial penalty
is paid in terms of a sharp decrease in lift, accompanied by an abrupt pitching
moment.

In recent times, dynamic stall has received increasing attention in connection with
future designs for helicopters and combat aircraft. Experimental observations of
certain unsteady airfoil motions show that angles of attack well beyond the static
stall angle can be attained without provoking breakaway separation (at least for
a brief interval). The static stall angle may be regarded as the minimum angle of
attack for which stall occurs from a stationary airfoil in uniform flow. In practice, the
measured lift on an airfoil grows linearly with small angles of attack and the static
stall angle is defined (somewhat subjectively) as the first angle for which a significant
deviation from the linear relationship is observed. This definition is not necessarily
synonymous with the first onset of separation. With increasing angle of attack, a
short bubble of recirculating flow is first observed near the nose and experiments
suggest that this event does not produce an appreciable deviation from the linear
lift/incidence relationship; however at higher angles, unsteady breakaway separation
is observed. It appears that relatively high lift can be achieved in unsteady flow (at
least for short periods) and Francis & Keesee (1985) were able to briefly obtain lift
values up to thrice the maximum static lift using an airfoil pitched up rapidly in a
uniform flow. This phenomenon is attractive since it suggests that higher values of lift,
and thus increased manoeuvrability, could be realized in aeronautical applications.
For example, rotorcraft blades are configured to pitch up rapidly as each blade on the
main rotor moves in a direction opposite to the forward motion of the helicopter (the
retreating side) in order to balance the lift on the advancing side, where a relatively
higher mainstream speed is encountered. Although enhanced lift can be achieved as
the blade is pitched above the static stall angle, it has been difficult to exploit the
phenomenon due to the severe penalty that must eventually be paid when the stall
vortex leaves the upper surface of the blade. For this reason, current helicopters are
designed to try to avoid the dynamic stall regime insofar as this is possible. It is
likely, however, that future designs of rotorcraft could achieve substantial gains in
manoeuvrability and much recent work has concerned various ways to control the
leading-edge separation (see, for example, Karim & Acharya 1994; Wang 1995; Yu
et al. 1995; Alrefai & Acharya 1996).

To gain advantage in air-to-air combat, manoeuvrability is generally believed
to be more important than speed and for brief periods, the wings of a fighter
aircraft could be at angles of attack up to 75◦ (Francis 1995). Thus the operating
environment is at times deep within an unsteady regime where the airfoil would
normally stall in steady flow and control mechanisms must be considered to avoid
abrupt loss of lift and the potential instabilities associated with unsteady flow. A
common feature of combat aircraft and rotorcraft is that the airfoil manoeuvres
which penetrate the unsteady regime are rapid and often of relatively short duration.
Thus practical control measures that inhibit separation from the leading-edge region
are of considerable interest, in order that the process leading to dynamic stall may be
delayed (and potentially suppressed), whilst still maintaining enhanced levels of lift.
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The issue of boundary-layer control at the leading edge is difficult in a practical
sense, especially for helicopter blades, where complex mechanical control surfaces do
not seem feasible. In the past, suction has been used for control and, for example,
Poppleton (1955) showed that weak suction applied over the first 15% of chord on
the upper surface could produce a 40% increase in lift for an airfoil at 15◦ angle of
attack. More recently, Karim & Acharya (1994) and Alrefai & Acharya (1996) have
carried out experiments with a small suction slot over the first 2% to 5% of chord,
for Reynolds numbers Rec (based on chord length c) up to around 105; the airfoil was
pitched up to angles of attack approaching 35◦, and thus was within the post-stall
regime. It was found that leading-edge separation was inhibited, and in some cases,
the dynamic stall process was suppressed. Wang (1995) has carried out numerical
solutions of the Navier–Stokes equations at Rec = 5000 using a vortex method. For
uniform suction in the slot, the most effective configuration was similar to that studied
by Poppleton (1955), wherein the slot extended over the first 20% of chord for an
NACA 0012 airfoil. The airfoil was pitched up uniformly from rest to angles in excess
of 30◦. It was determined that if the suction was applied early enough, leading-edge
separation and dynamic stall could be effectively prevented, while enhanced lift was
still realized.

In an earlier partial study, similar conclusions were reached by Shen and Xiao
(S. F. Shen, 1990, private communication) concerning the effectiveness of suction as
a separation control on the rear half of an impulsively started circular cylinder. For
a solid wall, the boundary-layer solution reaches a separation singularity at a time of
t∗ ≈ 1.5r∗

0/U0, where r∗
0 is the cylinder radius and U0 the free-stream velocity. When a

suction distribution of the form vr (θ, r∗
0 , t

∗) = −V̄ cos(θ − π/4)
√

U0ν/r∗
0 was applied

for 0 � θ � π/2 (θ is measured from the downstream radius and ν is the viscosity)
starting at t∗ =1.05r∗

0/U0, separation could be suppressed during the considered time
interval for sufficiently large values of V̄ ≈ 10. The results for other cases considered
indicated that more suction was required to suppress separation when suction is
started later, and for a narrower slot.

In view of the previous work, the central focus here is on the leading-edge region
of the airfoil and the primary purpose is to investigate the question of what can
be done to avoid separation in transient flows.† In the present study, a suction slot
was introduced on the upper surface of the parabola with a total suction volumetric
rate O(εRe−1/2

c ), where ε is the airfoil thickness ratio (defined as the maximum
thickness divided by c). Experience shows that a Lagrangian solution is necessary
for an accurate and reliable determination of the Van Dommelen & Shen (1980)
singularity but because there are no existing schemes to account for suction, a
method is developed in § 6. As results were being obtained, it seemed there was a
lack of basic knowledge, which was required to embed the unsteady computations in
a larger context. For example, even in steady flow, there was a question of whether
separation could be avoided for any angle of attack by an appropriate amount of
suction and if so, how much suction was needed. In addition should the suction be
applied locally with a narrow slot or would it be more desirable to distribute the
suction over a larger area (to be determined)? Some answers to these questions are
given in § 4.

† Here ‘separation’ implies that a smooth thin boundary layer fails to exist. Separation will not
occur if the Goldstein (1948) and Van Dommelen & Shen (1980) singularities can be avoided
in steady and unsteady flow, respectively. Flow reversal does not necessarily imply that the
boundary-layer solution terminates in unsteady flow (Sears & Telionis 1975).
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The case of primary interest is the transient flow in the nose region when the scaled
angle of attack changes due to alterations in the incoming flow. The flow change is
assumed to be initiated impulsively, corresponding most directly to a sudden gust or
a sudden initiation of rotation of the airfoil section about some suitable axis. It is
further assumed that the entire flow is impulsively started from rest, as is common in
this type of study; the reason is that this initial condition is cleaner than an arbitrary
assumption of some type of pre-existing boundary layer, which would also lead to the
complication of a two-layer structure at early times. It seems unlikely that a thin at-
tached initial boundary layer will fundamentally change any of the processes involved.

The analysis assumes laminar flow in the leading-edge region, which is believed to
be of significant practical utility. While as one referee has pointed out, the boundary
layer may be very unstable after flow reversal see (Cowley, Hocking & Tutty 1985),
in the transient situations considered, disturbances have only a limited time to grow.
Although turbulence may be observed experimentally downstream of the nose, it is
unclear whether a turbulence model (to characterize small fluctuations in a possible
transitional zone) will have a dramatic influence on the Van Dommelen & Shen
process, which is driven by the convective terms. In any event, it is believed to
be important to understand the laminar problem before the turbulent equivalent
is addressed. In the present study, it was found that the separation process could
be significantly delayed at all finite scaled angles of attack, and under the right
circumstances completely eliminated.

2. Governing equations
Consider an airfoil of thickness ratio ε which is immersed in a uniform flow of

speed U0 and which is thin in the sense that ε � 1. When the airfoil executes a
manoeuvre such that the angle of attack is O(ε), the inviscid flow field may be
determined using thin airfoil theory. For a given airfoil shape with a smooth nose, the
inviscid solution describing the perturbation tangential velocity (about the uniform
flow) is singular at the leading edge. This solution is interpreted as an outer solution,
which must be matched to an appropriate solution in the leading-edge region (see, for
example, Van Dyke 1956, 1964; Katz & Plotkin 1991). The nose of the airfoil can be
represented by a parabola with a dimensionless nose radius r0 (referred to c/2), given
by r0 =R0ε

2. Here R0 is an O(1) constant and, for example, R0 = 2.204 for an NACA
0012 airfoil (ε =0.12) and R0 = 2.370 for a Joukowsky airfoil (Katz & Plotkin 1991).
Let x ′ and y ′ denote dimensionless scaled Cartesian coordinates (referred to the nose
radius) centred at the parabola vertex y ′ = ±

√
2x ′.

The inviscid motion around the parabola can be conveniently described in terms
of parabolic coordinates (ξ̃ , η̃) defined by

x ′ + iy ′ = 1
2

+ 1
2

{
ξ̃ + i(η̃ + 1)

}2
. (2.1)

The parabola surface is η̃ = 0 and ξ̃ varies from −∞ to +∞ on the surface. It can be
shown (Van Dyke 1956, 1964) that the inviscid slip velocity U∞ (referred to U0) is

U∞(ξ̃ , t) =
ξ̃ + a√
ξ̃ 2 + 1

(2.2)

where a can be a specified function of time whose value is proportional to the
effective angle of attack for the flow near the nose, including the effects of Kutta
condition, camber, motion, and ambient flow changes, divided by the square root of
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the non-dimensional nose radius r0 (see, for example, Wang 1995). The function a(t)
can be determined by matching the leading-edge solution to the global airfoil solution
for a given shape and manoeuvre (Zalutsky 2000). The stagnation point is the point
of attachment of the inviscid flow and occurs on the lower surface of the parabola
(for a(t) > 0) at ξ̃ = −a.

The boundary-layer problem can be formulated in terms of the parabolic coordi-
nates by introducing a scaled normal coordinate and velocity ỹ = Re1/2

r η̃, ṽ =Re1/2
r ũη̃,

respectively, where ũη̃ is the velocity component in the η̃-direction (referred to U0) and
Rer = r0cU0/2ν is the Reynolds number based on the nose radius, which is assumed
large. It is convenient to introduce new coordinates and a redefined normal velocity
by

x = 1
2

{
ξ̃ (1 + ξ̃ 2)1/2 + sinh−1 ξ̃

}
, y = (ξ̃ 2 + 1)1/2ỹ, u = ũξ̃ , v = ṽ +

ξ̃ ỹ

(ξ̃ 2 + 1)3/2
u,

(2.3)

where x measures arclength from the vertex (referred to the nose radius). The Eulerian
boundary-layer equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p∞

∂x
+

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
= 0, (2.4)

where

∂p∞

∂x
≡ −∂U∞

∂t
− U∞

∂U∞

∂ξ̃

dξ̃

dx
(2.5)

is equal to the non-dimensional pressure gradient, assuming that non-inertial terms,
if any, can be ignored compared to the large convective terms (White 1991, p. 95).
The boundary conditions are

u → U∞(ξ̃ (x), t) as y → ∞; u = uw(x, t), v = vw(x, t) at y = 0, (2.6)

where uw and vw represent the imposed surface velocities.
It is well known that for positive constant a less than a critical value of ac ≈ 1.16

(Werle & Davis 1972; Cebeci, Khattab & Stewartson 1980; Ruban 1981), a steady
attached boundary-layer solution exists. (A more precise value of ac will be obtained
here in § 3.) The inviscid flow on the pressure side of the parabola accelerates smoothly
and the boundary layer evolves to the Blasius solution as ξ̃ → −∞. On the other
hand, the inviscid flow is accelerated around the nose, reaching a maximum on the
upper surface at ξ̃ = 1/a. Thereafter the pressure gradient is adverse, and the wall
shear decreases to a positive minimum if a is somewhat less than ac; the boundary
layer then recovers, eventually approaching a Blasius profile downstream as ξ̃ → ∞.
At the critical value ac, the minimum in wall shear is identically zero at x ≈ 6.8
(see § 3 for a refined value). Within a small range O(Re−2/5

r ) of values of a near ac,
Ruban (1981) and Stewartson, Smith & Kaups (1982, equation 3.19) have shown that
a family of steady solutions exists describing a short bubble of reversed flow. This
phenomenon is known as marginal separation. Once a exceeds ac by an amount O(1),
no matter how small, Degani, Li & Walker (1996) show that unsteady boundary-layer
separation (and a local eruption) occurs in the leading-edge region.

If design conditions for aerodynamic surfaces are configured to avoid separation
entirely, then the angle of attack (and hence the lift) is restricted to relatively low
values. For example, the critical value for steady flow for a NACA 0012 airfoil is 5.89◦

and for a Joukowsky airfoil 6.12◦ (for ε = 0.12); for an abrupt start, these angles are
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doubled. Note that the static stall angle for the NACA 0012 airfoil is larger than the
former value and estimates from experiments range from 14◦ to 18◦. There are several
possible reasons for this. First the laminar flow at the leading edge may separate just
above the critical angle and provoke early transition; the turbulent boundary layer
can then subsequently re-attach downstream and in such a situation the observed
lift would still roughly conform to the linear relation with angle of attack. It is also
possible that ‘finite thickness effects’ play an important role for the NACA 0012
airfoil; for example, at about 3.5% of chord the deviation of the parabola is about
10% in excess of the actual airfoil thickness. Wang (1995) noted significant deviations
between Navier–Stokes simulations of a NACA 0012 airfoil for Rec = 5000 and the
corresponding approximating parabolic nose at Rer = 79. The objective of the present
work, however, is not to model a specific airfoil shape closely but to determine if the
limits on angle of attack can be substantially expanded through leading-edge suction.

The reason that suction can be effective for inhibiting separation may be inferred
from the streamwise momentum equation (2.4). If ω = −∂u/∂y denotes the scaled
boundary-layer vorticity (with respect to 2U0Re1/2

r /r0c), the scaled surface vorticity
flux (Lighthill 1963) is

qw = −∂ω

∂y

∣∣∣∣
y=0

=
∂p∞

∂x
− vw(x, t)ω(x, 0, t), (2.7)

for uw = 0. Suppose that at some initial time, an unseparated flow exists with u > 0 and
ω < 0 throughout the boundary layer for ξ̃ > −a and then an impulsive manoeuvre of
the airfoil or ambient flow change increases the effective angle of attack to some value
ao > ac. The new inviscid flow achieves an absolute maximum of U∞,m at ξ̃m = 1/ao

and for ξ̃ > ξ̃m, the pressure gradient is adverse. For a solid wall, the vorticity flux
on the major part of the upper surface is positive and just downstream of ξ̃m,
where the pressure is increasing most rapidly, a large amount of positive vorticity is
soon created. Thus a line of zero vorticity progressively penetrates into a region of
otherwise negative vorticity. It is somewhere along this line that the Van Dommelen
& Shen (1980, 1982) process is born. It is evident from equation (2.7) that if suction is
applied at the wall (vw < 0) while ω(x, 0, t) is still negative, then the suction provides
a counteracting negative vorticity flux. This control can, in principle, be effective at
suppressing separation, depending on the magnitude of vw and whether the suction
is initiated at sufficiently early times.

Now let a suction slot be located on a section of the wall from x = x0 to x = x1,
where x0, x1 are constants. A number of suction distributions were considered in this
study, but for the majority of the calculations the following form was used:

vw = v(x, 0, t) = −V sini q, q =
(x − x0)π

(x1 − x0)
, (2.8)

where i is a chosen integer and V is the maximum scaled suction velocity. For
uniform suction i =0 and v(x, 0, t) is discontinuous at the edges of the slot. In most
of the unsteady calculations, a higher value for i was selected to ensure a smoother
transition at the edges of the slot; derivatives up to order (i −1) are continuous there.

A dimensionless suction coefficient can be defined as the rate of volume removal
divided by U0r0c/2 according to

cq = Re−1/2
r

∫ x1

x0

|v(x, 0, t)| dx = Re−1/2
r CQ, (2.9)
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where it is easily shown that CQ = V (x1 − x0)ei; for i = 0, 1, . . . 4, the values of ei are
1, 2/π, 1/2, 4/3π and 3/8 respectively.

To assess whether weak suction through a slot can significantly inhibit separation
in the limit Rer → ∞, a representative base flow must be selected. First note that in
addition to the time t (referred to U0 and the nose radius), there is also a global
dimensionless time t̄ (referred to the chord) such that t̄ = R0ε

2t/2. Thus a time
interval that is O(1) in t̄ is effectively infinite in the nose time t (for thin airfoils).
This means that an airfoil manoeuvre on the global scale will produce an effectively
steady flow near the nose for a <ac and separation will be almost immediate for
any angle of attack such that a − ac > 0. Various manoeuvres that take place on the
‘short’ time scale could be addressed. However, here the simplest situation where a

suddenly achieves a constant value is considered; this is believed to be representative
of the worst possible case for a separation control to be effective. From a physical
standpoint, this may be viewed as a thin airfoil which is abruptly started at a small
angle of attack at t =0; the determination of the unsteady inviscid flow is known as
the Wagner (1925) problem when the trailing edge is cusped. For steady flow satisfying
the Kutta condition, matching of the global inviscid solution to the local inviscid nose
solution yields an angle of attack, measured from the direction of symmetric flow
around the nose, α∗ = 1

2
R

1/2
0 εa (Degani et al. 1996). For unsteady flow, the solution

of the Wagner (1925) problem (see, for example, Zalutsky 2000) predicts that the
value of a achieves one-half of its final value abruptly at t = 0, since the circulation
around the steady airfoil increases a by a factor 2. Since the frontal stagnation point
moves along the leading edge with the slow time scale t̄ as the airfoil sheds vorticity
and hence picks up circulation, α∗ = R

1/2
0 εa on the time scale studied here. This is

consistent with experimental observations that relatively high angles of attack can
be achieved in unsteady flow, as opposed to steady flow, without rapidly provoking
separation at the leading edge. We will now first examine the effect of steady suction
on this flow.

3. Steady numerical scheme
Calculations were carried out for steady flow to form a basis of comparison for

the unsteady computations, as well as to determine minimal suction distributions
required to eliminate separation. Steady boundary-layer calculations were initiated
at the stagnation point ξ̃ = −a and continued downstream over the top surface. A
vorticity formulation, previously used by one of us (L.v.D.) in unsteady second-order
(Van Dyke 1964) boundary-layer computations, was employed. Advantages of this
approach are that: (i) it is easier to implement boundary conditions for large y

numerically, especially at second-order, and (ii) wall boundary conditions on the
vorticity can be enforced exactly. The vorticity ω = −∂u/∂y satisfies

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

∂2ω

∂y2
,

∫ ∞

0

ω dy = −U∞(x), ω → 0 as y → ∞. (3.1)

Equation (2.7) relates ∂ω/∂y and ω at y = 0 to the pressure gradient but using the
integral condition in (3.1) ensures that the external flow velocity at large y remains
correct regardless of numerical errors. Such integral conditions have been used with
good success in other contexts (see, for example, Collins & Dennis 1973).

The numerical method used is a Crank–Nicholson type scheme. A mapping of y to
a computational coordinate ŷ, of the form y = ky tan(πŷ/2), was used to define a non-
uniform mesh in y using a uniform spacing in ŷ. A value ky = 1.33δ̄∗(x) was selected,
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with δ̄∗(x) being a rough least-squares approximation to preliminary values of the
displacement thickness (including a growth proportional to

√
x far downstream). In

the x-direction, another non-uniform mapping x = kx tan(A0 +A1x̂) was used, with kx

a mesh-stretching parameter, typically chosen to be 2 or 3; A0 and A1 were chosen to
locate the stagnation point at x̂ = 0 and produce infinite x at x̂ = 1. Differencing of the
viscous term was done in physical space in order that quadratic velocity profiles were
differenced exactly regardless of the mapping from y to ŷ. The y-derivatives in the
relationship between u and ω and in the continuity equation were treated similarly;
in particular, near the external flow region where v is O(y) as y → ∞, the integration
is exact regardless of the strong mesh stretching.

Situations were considered where either the normal velocity or the wall shear was
prescribed; whichever was specified left the other unknown. At any x-station, the
nonlinear Crank–Nicholson equations were solved using Newton iteration, requiring
a system of block-tridiagonal linear equations to be solved at each iteration if the
unknown wall boundary is handled through a shooting method. Because of linearity,
the shooting method converges in one step. Typically five to ten Newton iterations
were required to produce convergence to round-off error.

For a given value of a, the calculation was continued until the entire paraboloid
had been computed or until a Goldstein (1948) singularity was encountered. This
singularity evolves when the pressure distribution is prescribed and the wall shear
tends to zero; its occurrence has been classically referred to as steady separation
and continuation of the integration downstream is not then possible. The four-term
analytical expansion of the wall shear, as generalized by Terrill (1960) to include
suction, was used in some computations to extrapolate the location of the separation
singularity from the data just upstream; this procedure avoids some numerical error
provoked by the singular behaviour at the separation point itself. Computations
were repeated at varying mesh sizes to ensure that all presented results are mesh
independent. Reasonable accuracy was usually achieved with 128 or 256 mesh points
in each direction, but most final results were obtained with 2048 or 4096 mesh points.
The circular cylinder flow of Terrill (1960) was recomputed as a test and excellent
agreement was obtained.

At the edges of the suction slot where an abrupt change in suction velocity occurs,
the usual algebraic singularities and a two-layer structure occur (see, for example,
Rosenhead 1963; Walker & Dennis 1972; Smith & Stewartson 1973). Following
well-known methods and omitting the details, suppose a change in suction velocity
occurs at x = xe, by an amount 
vw ≡ v+

w − v−
w , where the sign denotes values of vw

just downstream and upstream of xe. Downstream of xe a viscous sublayer of extent
y = O(x̄1/3) forms (where x̄ = x − xe), with the usual transposed main boundary layer
above it. The sublayer flow is readily solved in terms of incomplete Gamma functions
and it is found that the scaled wall shear behaves as

τw = −ω(x, 0) = τe − 35/6τ 2/3
e �(2/3)d1

π

vwx̄1/3 + · · · , (3.2)

immediately beyond the edge, with τe the wall shear of the boundary layer immediately
before the edge and d1 = π/(31/6�2(2/3)). Similarly the displacement thickness and
displacement velocity at the boundary-layer edge show irregular behaviour according
to

δ∗(x) = δ∗(xe) + d1τ
−2/3
e 
vwx̄2/3 + · · · , vd ∼ 2

3

(
x̄τ 2

e

)−1/3
d1U∞(xe)
vw + · · · , (3.3)

for x̄ � 1.
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Figure 1. Effect of not resolving the two-layer structure; numerical results for wall shear
(�), displacement thickness (�), and displacement velocity (�).

A very complex code was developed that actually resolved the two-layer structure
(see also Smith & Stewartson 1973). However, it was found that the basic scheme
works well either if the jump was represented as a smooth but rapid transition over
a small streamwise region or if a simple backward difference was used for one or
two steps after an abrupt jump (see also Walker & Dennis 1972). Calculated results
(for a case where suction terminates at x =9.7) using the latter approach with two
backward Euler steps are shown by symbols in figure 1; corresponding results with
the complex code (which still has visible stability problems downstream) are shown
as solid lines. The asymptotic results (3.2)–(3.3) are shown as broken lines. (The
resolved code does not use the asymptotic solution and thus provides a true test of
it). The infinite displacement velocity cannot be correctly captured by the unresolved
scheme, but evidently the effects disappear after a few steps, and away from the
jump, convergence with mesh size remained unaffected even for the unsmoothed
computations. The singularity induced by the jump in the normal velocity can, in
principle, be resolved by a triple-deck structure on the edges of the slot; these local
interaction regions, however, do not affect the downstream results.

To further validate the scheme, the critical angle of attack at which separation
first occurs was recomputed. A refined value of ac =1.15755 was determined using
extrapolation of the minimum shear, and a more precise value of 1.15757 by directly
shooting for zero shear, at x = 6.823. These values of ac agree with Werle & Davis
(1972), who indicate that 1.157 <ac < 1.158, as well as subsequent estimates by Cebeci
et al. (1980) of 1.155 and Ruban (1981) of 1.1556. The separation location at x =6.823
corresponds to ξ̃ =3.351. This agrees with value ξ̃ ≈ 3.34 read off (by us, as 10.1 for
the Görtler variable) from the corresponding graph in Werle & Davis (1972), with
the value ξ̃ ≈ 3.3 estimated by Stewartson et al. (1982) apparently using data from
Cebeci et al. (1980), and with x = 6.99 found by Ruban (1981).

4. Calculated steady results
Various computations were carried out to determine if a finite amount of scaled

suction, i.e. a physical volumetric suction rate O(ε2Re−1/2
r ), applied in a variety of ways,

could eliminate steady separation. The first implementation of suction considered is
referred to as ‘locally-minimal suction’ and just enough suction was applied at each
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a/Ωm 0.2 0.1 0.5 0.025 0

2 2.5845 2.3974 2.3568 2.3471 (2.3439)
3 6.1721 5.8868 5.8247 5.8099 (5.8050)
4 9.953 9.570 9.486 9.466 (9.459)

Table 1. Scaled suction coefficient CQ for various a and Ωm for ‘locally minimal’ suction.

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40

 

84 3216

–vw

x
0

0.1

0.2

0.3

0.4

0.5
(a) (b)

10 20 30 40
x

∞

Figure 2. ‘Locally minimal’ suction profiles for a = 2. Steady profiles (a) are for Ωm =0.025
(solid line), 0.05 (long dash), 0.1 (short dash), and 0.2 (short/long dash) (curves at smaller
values coincide). Unsteady profiles (b) are for Ωm = 0.2 and times t = 4, 8, 16, 32 (solid lines)
and ∞ (dash).

x-station to ensure that the non-dimensional wall vorticity parameter

Ω ≡ uy(x, 0)

U∞(x)
δ∗(x) � Ωm, (4.1)

where δ∗ is the displacement thickness and Ωm is a chosen tolerance level. Ω is
dimensionless and depends only on the velocity profile; for the asymptotic suction
profile Ω =1 (Rosenhead 1963), while Ω = 0.571 for the Blasius profile. Finite suction
cannot occur for Ωm > 0.571, since u must approach the Blasius solution as x → ∞.

Calculations were started at the front stagnation point and once Ω threatened to
drop below the specified value of Ωm in the region of adverse pressure gradient on
the upper surface, just enough suction was introduced at that x to maintain condition
(4.1). Such a suction distribution is admittedly difficult to implement in practice but
is useful in establishing the minimum suction volumes required to avoid separation.
Computed suction coefficients for various Ωm and a are given in table 1. The last
column gives apparent limiting values as Ωm → 0, which are conjectured to be the
minimum suction amounts required to avoid separation for each a. The required
suction increases fairly linearly with a − ac.

Computed suction profiles on the upper surface for a = 2 and various Ωm are shown
in figure 2(a). Evidently the suction must be continued relatively far downstream but
the profiles are almost the same for all Ωm.

The suction profiles for the corresponding unsteady problem (with the flow
impulsively started from rest) and using Ωm = 0.2, are shown in figure 2(b). It may
be observed that the long tail to the suction distribution only becomes necessary for
numerically very large times; at earlier times, the suction volume is much reduced
from the steady requirement.
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Figure 3. (a) Wall shear and (b) displacement velocity profiles corresponding to figure 2(a).
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Figure 4. Suction profiles for Ωm = 0.025 and a = 2, 3, and 4.

The steady wall shear in figure 3(a) shows the effect of the suction as soon as the
vorticity parameter drops below the preset level Ωm. The displacement thickness rises
downstream of the nose in all cases to meet the Blasius solution far downstream
where δ∗ ∼ x1/2, but actual levels of δ∗ are reduced at fixed x with increasing values of
Ωm. The displacement velocity vd at the boundary-layer edge is shown in figure 3(b).
A spike develops for Ωm → 0 at the streamwise location where suction starts; note
that the smaller the value of Ωm, the later suction begins and the closer the solution is
to infinite displacement velocity as a Goldstein singularity is approached. The heights
of the spike shown in figure 3(b) probably converge with mesh size, but convergence
is slow, especially at small Ωm, and seems to depend on exactly where the streamwise
mesh points happen to fall compared to the exact initiation of suction. Improved
values of the spikes could possibly be found from an appropriate extrapolation based
on the analytical structure near the initiation of suction. Lastly, the suction profiles
for various values of a are shown in figure 4; for a = 4, the suction extends as far
downstream as x =125.

The case where suction is constant over a finite range, i = 0 in (2.8), has been studied
by many authors and this second situation is also considered here. Since the separation
singularity moves toward the nose with increasing a, it seems most reasonable to
start the suction at x0 = 0. In order to find the minimum suction volume under these
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Figure 5. Wall shear and displacement thickness for a = 2 and uniform suction with
V = 0.303 applied from x = 0 to 9.57.

two constraints, first the minimum suction velocity V was determined by trial and
error, which produced an unseparated state when suction is extended downstream
indefinitely (i.e. x1 → ∞). For example, for a = 2, the case shown in figure 5, it required
a suction velocity V = 0.303 to keep the minimum shear at x = 2.9 positive. When the
suction velocity was slightly reduced to V = 0.302, the minimum drops to zero and
a Goldstein singularity forms. This result proved true for all meshes employed from
5122 to 40962 and whether central x-differences with a smoothed velocity jump or a
couple of backward Euler steps at an abrupt jump in suction was used at x0 = 0.

With a suction velocity V =0.303, separation at x = 2.9 is just avoided, but further
downstream, the pressure gradient decreases, and at some point the boundary layer
has recovered enough that the suction can be terminated without causing any further
separation. To minimize the suction volume, the suction region should be terminated
as soon as possible. Note however from equation (3.2) and figure 1 that at the
termination of suction at x = x1, the wall shear plunges proportional to −(x − x1)

1/3.
Separation will then occur downstream of the suction slot unless x1 is sufficiently large.
The smallest value of x1 to avoid downstream separation was found using a binary
search technique to be x1 = 9.57. Hence the minimum suction volume is obtained at
a suction velocity V = 0.303 and a slot extending to x1 = 9.57, producing a suction
coefficient equal to CQ = 2.9 and the final wall shear and displacement thickness
distributions of figure 5. Note that a true local minimum in suction volume has
been obtained: V cannot be reduced because the solution would separate at x =2.9;
variations in x1 play no part in that. And if the value of x1 is reduced, keeping
CQ constant, the minimum shear at x = 24.6 in figure 5 (most evident from the
relaxation of the displacement thickness growth after passing the region of marginal
separation) separates. Far downstream, the wall shear approaches the Blasius value
(|ω(x, 0)| ∼ 0.332x−1/2) but very slowly; there is still a 30% error at x = 200, 20% at
400, 14% at 800 and 10% at 1700. Yet is seems clear that the Blasius value is indeed
approached, ensuring that the suction found does indeed prevent separation for all x.

Calculated values for constant suction for other values of a are summarized in
table 2. A comparison with table 1 shows that the suction coefficients for constant
suction are larger than those for ‘locally minimal suction’, as conjectured. However
the differences are not large and it appears that constant suction starting at the
nose is relatively efficient. This result is in qualitative agreement with the experiments
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a V x1 CQ

2 0.3026 9.57 2.90
3 0.6706 12.5 8.39
4 1.0002 17.2 17.2

Table 2. Minimum suction velocity and parameters for unseparated flow
when x0 = 0 and i = 0 in equation (2.8).
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Figure 6. (a) Wall shear and (b) displacement thickness profiles for smooth suction, i = 3,
between x = 0 and 2.9 at a = 2; peak suction velocities V = 0 (broken), 0.5, 1, 2, 3, and 10.

of Poppleton (1955) and the numerical simulations of Wang (1995). Lastly, since
solid-wall separation occurs at x = 1.1867 for a = 2, it might seem worthwhile to try
to save suction volume by starting the suction at say, x0 = 1, instead of at the vertex
x0 = 0; however this modification changed the required suction velocity to 0.361 with
x1 = 8.9 and hence CQ is almost the same.

In some experiments (see, for example, Alrefai & Acharya 1996), a narrow slot was
used. To determine the effect of applying a larger suction velocity over a narrower
slot, the suction velocity for a = 2 was raised from V = 0.303 to 1 with the start of
suction moved to x0 = 1, which is closer to the solid-wall separation location. It was
found that suction had to then extend to x1 = 5.2, giving a required suction coefficient
CQ = 4.2, which is significantly more than the value 2.9 in table 2. Hence at least in
this case a smaller suction region requires a larger volumetric flow rate; this appears
consistent with existing data such as Poppleton (1955) and Wang (1995). Note that
when the slot is extended farther downstream, the average pressure at which the fluid
is removed increases, decreasing average required pumping vacuum.

Next suction of the type (2.8) was considered with i =3, x0 = 0 and x1 = 2.90 for
various values of V . The wall shear and displacement thickness distributions for
a =2 are shown in figures 6(a) and 6(b), respectively, and the separation locations
for various parameters in table 3. With increasing suction the separation point moves
downstream of the end of the slot but for a = 2, despite the fact that suction coefficients
considerably higher than 2.34 (see table 1) were used (up to 12.3), separation still
occurs.

Since separation could be completely avoided using longer suction slots (for example
those implied by figure 2(a) or those of table 2) this raises the question of whether
a minimum slot size is needed if separation is to be avoided everywhere. It will be
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a\V 0 0.5 1 2 3 4 6 10

2 1.1867 2.2809 2.9434 4.0615 4.9263 6.6405
3 0.7661 0.8415 2.8239 3.6785 4.1033 4.4113
4 0.6079 0.6289 0.6564 2.8350 3.5488 3.8651

Table 3. Location of steady separation for smooth suction, i = 3, between
x0 = 0 and x1 = 2.9.
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Figure 7. Minimum suction range required to prevent separation completely.

shown that this is indeed the case; in particular, for given a, the slot must at least
extend over the range indicated in figure 7. For the indicated example, a = 3, the slot
must start before x = 0.766 and must extend beyond x = 8.54. Otherwise, separation
will occur even in the presence of large scaled suction through the slot.

Note that below a scaled angle of attack a =1.546, where the two curves of fig-
ure 7 intersect, an arbitrarily narrow slot could be used, maybe located at x = 1.79, the
intersection point. However, a finite scaled slot size is needed above this critical value.

Turning to the justification of these observations, the restriction on the starting
point of the slot is simple: it is the location of separation for a solid wall (table 3 at
V =0). Since in the considered boundary-layer approximation, suction cannot affect
the boundary-layer flow upstream of the slot, the slot must obviously start before the
solid-wall separation location to avoid separation.

Conversely, if this requirement on the starting point is met, there will be no
separation in the solid-wall boundary layer upstream of the slot. In addition,
separation above the slot can be prevented by applying enough suction through the
slot. In particular, for sufficiently large suction, u should approach an unseparated
asymptotic suction profile having a displacement thickness that decreases and a wall
shear that increases with increasing suction (Pretsch 1944). These trends are most
evident in figures 6(a) and 6(b) near the centre of the slot; near the slot extremities
the suction is relatively weak.

The second restriction, for the suction slot to extend at least as far downstream as
the x1,min-curve in figure 7, is more complex. First consider the question of how soon
the suction slot can be terminated assuming that the suction through the slot is very
strong. If the suction is strong, the boundary layer above the slot is very thin (Pretsch
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1944), and the boundary layer immediately behind the end of the slot has essentially
zero thickness. The question of separation downstream of the slot then becomes that
of whether a solid-wall boundary layer that starts at zero thickness at the end of the
slot x = x1 will separate for x >x1. This question was answered using a modified code
that resolved the initially infinitely thin boundary layer profile at x1. It was found,
using a binary search, that if x1 was less than the values indicated by x1,min in figure 7
(8.54 for the example a = 3), downstream separation occurs. Thus, for strong suction,
the slot must extend past the limits shown in figure 7.

Note that there is another, vanishingly small, asymptotic region around x1; however,
since the pressure gradient is asymptotically negligible there, this region should only
act to modify the shape of the thin profile from the asymptotic suction profile
immediately upstream of x1 to the Blasius profile just downstream.

One would reasonably expect that if the suction were less strong, the slot would
need to be even larger than the limits of figure 7. This is certainly true for our
examples of ‘locally minimal’ suction and minimal constant suction above. It is also
in agreement with our other computational experiences. For example, figure 6(b)
shows that as suction increases, separation is retarded (the infinite suction solution in
this case predicts that the separation will reach x = 9.76 for infinite suction velocity
V ). Using the Pohlhausen approximation, it can be shown in general that the slots
for finite suction velocity must be larger. This approximation produces an equation
for Z = θ2/ν (Schlichting 1979, p. 210), where θ and ν are the momentum integral
thickness and the kinematic viscosity, respectively, which can be cast in terms of a
shape factor K = U ′

∞θ2/ν to obtain

U∞

U ′
∞

dK

dx
− U∞U ′′

∞
(U ′

∞)2
K = F (K), (4.2)

where F (K) is a known function. In the region behind the slot, U∞ > 1 and U ′
∞ < 0 and

consequently the differential equation (4.2) is regular and must have a unique solution.
Separation occurs when K reaches the value −0.1567. Now suppose a suction slot
is terminated at an x1 before the position required according to figure 7. Then the
boundary layer corresponding to strong suction, which starts at K = 0 at x1, reaches
separation, K = −0.1567, at some xs . A boundary layer starting with finite thickness
at x1, corresponding to finite suction, has an initial K-value that is negative, hence
is less than the infinite suction K-value. Going downstream, the K-values must stay
below those of the infinite suction case, because if the two solution curves crossed, it
would violate the uniqueness of the solution. That leaves no option but for the finite
suction curve to reach separation, K − 0.1567, before the infinite suction curve does.
And to still separate even when the limit of figure 7 is reached.

It should be pointed out that if the suction volumetric rate is raised sufficiently,
in particular from O(ε2Rer

−1/2) to O(ε2), for example, it becomes strong enough to
have a significant effect on the external flow velocity and the present analysis is not
valid. However, a suction volume much larger than the one required here would be a
practical disadvantage.

5. Unsteady formulation
In practical applications of suction control, a slot of finite length is used and by

adjusting the hole sizes or density in the wall various suction profiles at the surface
can be produced. Here a profile of the form (2.8) was used with i = 3. To an extent,
this is an arbitrary choice and was selected partly to ensure a relatively smooth
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transition in boundary conditions at the slot edges in this first application of the
Lagrangian method with suction.

The motion was taken to be impulsively started from rest, and for t > 0, an initially
thin boundary layer forms on the parabola. To describe this phase of the motion in
Eulerian coordinates, it is convenient to introduce the Rayleigh variable ζ = y/2

√
t .

The initial solution is u =U∞(x)erf(ζ ) for all x and ζ . It is convenient to introduce
computational coordinates x̂ and ζ̂ defined on the interval (0, 1) by

x − xc = hx(x̂) = kx tan
{

π
(
x̂ − 1

2

)}
, ζ = hζ (ζ̂ ) = kζ tan

(
1
2
πζ̂

)
. (5.1)

The parameters kx and kζ control the mesh spacing in physical space and xc is a value
of x around which the mesh is clustered. During the course of the work, clustering was
carried out at several locations as discussed in § 7. A uniform mesh in computational
space and smaller values of kx and kζ imply more points concentrated near the point
xc and near the wall, respectively.

The solution of the transformed system (2.4) was advanced numerically forward in
time from t =0 using a Crank–Nicholson method with upwind-downwind differences
for the first-order spatial derivatives (Doligalski & Walker 1984); the method is
second-order accurate in space and time. The difference equations were solved using
a simple alternating-direction-implicit (ADI) method, as opposed to the factored ADI
method in Peridier et al. (1991). At any stage in the process, the streamfunction was
evaluated by integration using Simpson’s rule (Degani et al. 1996). The Rayleigh
transformation was used only in the initial stages, when the boundary layer is
thickening in physical space proportional to t1/2. For large t the solution must
approach the Blasius solution for large x and continued use of the Rayleigh variable
causes the effective boundary layer in the computational domain to shrink toward
the wall. Thus the computation was switched back to the y variable at a finite time
td given in § 7. Let ŷ denote a computational variable defined in an analogous way to
equation (5.1); if the factor ky is selected as ky = 2

√
tdkζ , then mesh points in y and ζ

match up and a return to the y variable can be made without interpolation.

6. Lagrangian method
For those values of a where separation occurs, the Eulerian calculation eventually

fails to converge at a time denoted here by tf . Thus at a selected time to well in
advance of tf , § 7, the calculation was restarted in Lagrangian coordinates.

As discussed by Cowley et al. (1990), once separation starts to develop, the
boundary-layer flow starts to focus into an erupting plume which is very narrow
in the streamwise direction. The phenomenon is characterized by a rapidly thickening
boundary layer and strong local normal velocities. An effective way of dealing
with this event is to introduce Lagrangian coordinates wherein the trajectories of a
large number of fluid particles are evaluated. The main dependent variables are the
streamwise particle positions and velocities x and u, respectively, which are functions
of their initial positions (ξ, η) and t . The streamwise momentum equation takes the
form (Van Dommelen & Shen 1982)

∂u

∂t
= −∂p∞

∂x
+

{
−∂x

∂η

∂

∂ξ
+

∂x

∂ξ

∂

∂η

}2

u,
∂x

∂t
= u. (6.1)
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Figure 8. Schematic diagram of the solution domain in (a) Lagrangian space
and (b) computational space.

At any instant, the normal particle positions y(ξ, η, t) can be computed using the
continuity equation in Lagrangian coordinates:

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1. (6.2)

One important advantage of Lagrangian coordinates is that the occurrence of a
separation singularity is unambiguously defined as the first instant when a stationary
point occurs in the x field according to

∂x

∂ξ
=

∂x

∂η
= 0 at ξ = ξs, η = ηs, t = ts, (6.3)

since these conditions make the solution of equation (6.2) singular; see Van Dommelen
& Shen (1982) for details of the singularity structure. Note that the solution for x

is believed to be regular even at separation (see, for example, Van Dommelen 1991).
A Lagrangian integration may be initiated at any time to that the velocity field is a
known function uo of x and y, and initial conditions for the system (6.1), (6.2) are

x(ξ, η, to) = ξ, y(ξ, η, to) = η, u(ξ, η, to) = uo(ξ, η). (6.4)

When suction occurs through a slot between the points x = x0 and x = x1 on the
wall, the slot location in Lagrangian space is a curve C, with end points A and B
located at (ξ, η) = (x0, 0) and (ξ, η) = (x1, 0), which penetrates into the Lagrangian
domain with the passage of time, as shown schematically in figure 8(a). The curve
C represents the initial starting location of fluid particles which arrive at the slot
at time t; at the start of the Lagrangian calculations t = to, the equation of C is
simply η = 0. For an injection slot, the trend shown in figure 8(a) is analogous, except
that C penetrates downward into the region η < 0. Note that v does not appear
in the Lagrangian streamwise momentum equation and it is the movement of C in
Lagrangian space that influences the solution for u. Because the problem involves a
moving boundary, it is not convenient to carry out the calculation in the usual (ξ, η)
coordinates. Instead, computational coordinates (α, β) are defined such that the slot
remains on the α-axis between points A and B as indicated in figure 8(b).

There are a number of ways in which (α, β) can be defined; first consider a general
mapping to computational space of the form

α = α(ξ, η, t), β = β(ξ, η, t), τ = t − to, (6.5)
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with a corresponding inverse mapping

ξ = ξ (α, β, τ ), η = η(α, β, τ ), t = to + τ. (6.6)

Note that subsequent partial derivatives with respect to τ are taken with α and β held
constant, while derivatives with respect to t are with ξ and η constant. Increments in
computational space are given by

dα

dβ

dτ


 =


αξ αη αt

βξ βη βt

0 0 1





dξ

dη

dt


, (6.7)

where the subscripts denote partial differentiation and the quantities in the matrix
give the metrics of the transformation. An analogous equation can be written for
(dξ, dη, dt)T , and upon comparing with equation (6.7), it is easily shown that

αξ αη αt

βξ βη βt

0 0 1


 =

1

J̃ (α, β, t)


 ηβ −ξβ ξβητ − ηβξτ

−ηα ξα ηαξτ − ξαητ

0 0 J̃


, (6.8)

where J̃ = ξαηβ − ξβηα is the Jacobian of the transformation.
Denote the equation of C at any time in the Lagrangian plane by

ξ = ξw(α, τ ), η = ηw(α, τ ), (6.9)

and to determine the equations satisfied by ξw, ηw , suppose that fixed values of xw

and yw =0 on the slot in physical space are taken as fixed values of α and β = 0 in
computational space (see figure 8), in other words:

x [ξw(α, τ ), ηw(α, τ ), to + τ ] = xw(α), y [ξw(α, τ ), ηw(α, τ ), to + τ ] = 0. (6.10)

Differentiation with respect to τ yields

∂x

∂ξ

∂ξw

∂τ
+

∂x

∂η

∂ηw

∂τ
+

∂x

∂t
= 0,

∂y

∂ξ

∂ξw

∂τ
+

∂y

∂η

∂ηw

∂τ
+

∂y

∂t
= 0, (6.11)

where the partial derivatives of x and y are evaluated on the slot at ξ = ξw, η = ηw at
time to + τ . In the most general case, where the suction is vectored (or the wall moves
in the x-direction) with components specified as uw(x, t) and vw(x, t), substitution of

∂x

∂t
= uw(xw(α), to + τ ),

∂y

∂t
= vw(xw(α), to + τ ), (6.12)

in equations (6.11) yields the governing relations for ξw and ηw:

∂x

∂ξ

∂ξw

∂τ
+

∂x

∂η

∂ηw

∂τ
= −uw,

∂y

∂ξ

∂ξw

∂τ
+

∂y

∂η

∂ηw

∂τ
= −vw. (6.13)

These equations must be solved at any stage to determine the motion of the wall in
Lagrangian space, subject to the initial conditions, from (6.4),

ξw = xw(α), ηw = 0 at τ = 0. (6.14)

To evaluate the coefficients in equations (6.13), first note that in general

∂x

∂ξ
=

∂x

∂α

∂α

∂ξ
+

∂x

∂β

∂β

∂ξ
,

∂x

∂η
=

∂x

∂α

∂α

∂η
+

∂x

∂β

∂β

∂η
, (6.15)
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and using equations (6.8)

∂x

∂ξ
=

1

J̃

{
ηβ

∂x

∂α
− ηα

∂x

∂β

}
,

∂x

∂η
=

1

J̃

{
−ξβ

∂x

∂α
+ ξα

∂x

∂β

}
. (6.16)

Since x and u are evaluated in computational space as functions of (α, β, τ ), then
at any fixed τ , ∂x/∂α and ∂x/∂β can be calculated on β =0. Furthermore, once a
particular mapping (6.5) is adopted, ξα, ξβ, ηα , ηβ and J̃ , can be evaluated on the slot.
Also, differentiation of the second of equations (6.10) with respect to α yields

∂y

∂ξ

∂ξw

∂α
+

∂y

∂η

∂ηw

∂α
= 0. (6.17)

At any stage in the calculation ∂ξw/∂α and ∂ηw/∂α can be evaluated and consequently
the continuity equation (6.2) and (6.17) are two equations in two unknowns for ∂y/∂ξ

and ∂y/∂η evaluated on the slot. Thus equations (6.13) may be solved for the time
derivatives of ξw and ηw and a numerical procedure to advance the solution for
ξw(α, τ ) and ηw(α, τ ) in time can be developed.

Now consider the specific relation between ξ, η and α, β defined by

ξ (α, β, τ ) = ξw(α, τ ), η(α, β, τ ) = ηw(α, τ ) + β, (6.18)

so that the mesh lines are vertical in Lagrangian space with the wall defined by β = 0;
in addition choose xw(α) = α. Under this mapping

ξα =
∂ξw

∂α
, ξβ = 0, ηα =

∂ηw

∂α
, ηβ = 1, J̃ =

∂ξw

∂α
, (6.19)

and the metrics can be evaluated from equation (6.8); from (6.14) and (6.18) J̃ = 1 at
the initiation of a Lagrangian calculation (τ = 0). From (6.16)

∂x

∂ξ
=

1

J̃

{
∂x

∂α
− ∂ηw

∂α

∂x

∂β

}
,

∂x

∂η
=

∂x

∂β
, (6.20)

where the right-hand sides are evaluated on β = 0, for α locations in the slot, when
used in (6.13). For locations on the solid wall ξw = α, ηw = 0 for all τ . Using (6.2) and
(6.17)

∂y

∂ξ
= − 1

xα

∂ηw

∂α
,

∂y

∂η
=

1

xα

∂ξw

∂α
, (6.21)

and xα must be evaluated on the slot when (6.21) are used in the second of (6.13).
Substituting (6.20) and (6.21) into (6.13), it follows that ξw and ηw satisfy

∂ξw

∂τ
= −uw

xα

∂ξw

∂α
+ vwxβ,

∂ηw

∂τ
= − vw

∂ξw/∂α

{
xα − ∂ηw

∂α
xβ

}
− uw

xα

∂ηw

∂α
, (6.22)

with xα and xβ evaluated on the slot β = 0. Since x = α on β = 0 for all τ , equations
(6.22) reduce to

∂ξw

∂τ
= vwxβ,

∂ηw

∂τ
= − vw

∂ξw/∂α

{
1 − ∂ηw

∂α
xβ

}
, (6.23)

for uw = 0, with xβ evaluated on β =0.
Under the transformation (6.18), the boundary-layer equations (6.1) become

∂u

∂τ
+ αt

∂u

∂α
+ βt

∂u

∂β
= −∂p∞

∂x
+

∂2u

∂y2
,

∂x

∂τ
+ αt

∂x

∂α
+ βt

∂x

∂β
= u (6.24)
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where
∂

∂y
=

1

∂ξw/∂α

{
−∂x

∂β

∂

∂α
+

∂x

∂α

∂

∂β

}
, (6.25)

and the metrics αt and βt follow from equations (6.8) according to

αt = − ∂ξw/∂τ

∂ξw/∂α
, βt =

1

∂ξw/∂α

{
∂ηw

∂α

∂ξw

∂τ
− ∂ξw

∂α

∂ηw

∂τ

}
. (6.26)

Because u and x, as well as the metrics αt , βt , are regular at separation, one of the
main advantages of Lagrangian coordinates is preserved in the system (6.24)–(6.26).

Computational variables x̂, α̂, β̂ , are defined by the first of (5.1) and

α − xc = hα(α̂) = kx tan
{

π
(
α̂ − 1

2

)}
, β = hβ(β̂) = ky tan

(
1
2
πβ̂

)
, (6.27)

which have been chosen such that the Lagrangian mesh points match up with the
Eulerian ones from § 5 at time to. Upon substitution into equations (6.24), it is easily
shown that

∂u

∂τ
= −∂p∞

∂x
+ R

∂2u

∂α̂2
+ S

∂2u

∂α̂∂β̂
+ T

∂2u

∂β̂2
+ P

∂u

∂α̂
+ Q

∂u

∂β̂
, (6.28)

∂x̂

∂τ
+

αt

h′
α(α̂)

∂x̂

∂α̂
+

βt

h′
β(β̂)

∂x̂

∂β̂
=

u

h′
x(x̂)

, (6.29)

where

R

Π
=

(
∂x̂

∂β̂

)2

,
S

Π
= −2

∂x̂

∂α̂

∂x̂

∂β̂
,

T

Π
=

(
∂x̂

∂α̂

)2

, Π =

{
h′

x(x̂)

(∂ξw/∂α̂)h′
β(β̂)

}2

, (6.30)

P = − αt

h′
α(α̂)

+ Π

{
−∂2ξw/∂α̂2

∂ξw/∂α̂

(
∂x̂

∂β̂

)2

+
∂x̂

∂β̂

∂2x̂

∂α̂∂β̂
− ∂2x̂

∂β̂2

∂x̂

∂α̂
+

h′′
β

h′
β

∂x̂

∂α̂

∂x̂

∂β̂

}
, (6.31)

Q = − βt

h′
β(β̂)

+ Π

{
∂2ξw/∂α̂2

∂ξw/∂α̂

∂x̂

∂α̂

∂x̂

∂β̂
− ∂x̂

∂β̂

∂2x̂

∂α̂2
+

∂x̂

∂α̂

∂2x̂

∂α̂∂β̂
−

h′′
β

h′
β

(
∂x̂

∂α̂

)2
}

. (6.32)

The prime denotes differentiation and using equations (6.23), the metrics are

αt = −vw

h′
x(x̂)h′

α(α̂)

h′
β(β̂)∂ξw/∂α̂

∂x̂

∂β̂
, βt = vw

h′
α(α̂)

∂ξw/∂α̂
. (6.33)

In computational space, equations (6.23) become

∂ξw

∂τ
= vw

h′
x(x̂)

h′
β(β̂)

∂x̂

∂β̂
,

∂ηw

∂τ
= −vwh′

α(α̂)

∂ξw/∂α̂

{
1 − h′

x(x̂)

h′
α(α̂)h′

β(β̂)

∂ηw

∂α̂

∂x̂

∂β̂

}
. (6.34)

Finally, defining ŷ as in § 5, the continuity equation (6.2) transforms to

∂x̂

∂α̂

∂ŷ

∂β̂
− ∂x̂

∂β̂

∂ŷ

∂α̂
=

(∂ξw/∂α̂) h′
β(β̂)

h′
x(x̂)h′

y(ŷ)
. (6.35)

A singularity occurs in computational coordinates when

∂x̂

∂α̂
=

∂x̂

∂β̂
= 0 at τ = τs. (6.36)
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a V tv tf to ts xs CQ

2 0 – 4.5 5.82 1.20 0
0.5 0.2 10.213 9.0 10.2 2.34 0.62
1.0 13.956 12.0 13.7 2.98 1.23
2.0 24.669 20.0 24.4 4.09 2.46
3.0 35.094 30.0 35.0 4.96 3.69

10.0 59.370 50.0 60.4 6.67 12.3

3 0 – 1.5 2.55 0.789 0
0.5 0.2 3.286 2.8 3.24 0.865 0.62
2.0 7.570 6.5 7.56 2.86 2.46
4.0 12.082 10.0 12.1 3.71 4.92
6.0 14.388 12.0 14.7 4.13 7.38

10.0 16.261 14.0 16.5 4.44 12.3

4 0 – 1.10 1.62 0.637 0
0.5 0.2 1.773 1.5 1.77 0.665 0.62
1.0 2.005 1.75 1.99 0.684 1.23
3.0 5.427 4.7 5.42 2.89 3.69
6.0 7.846 6.8 7.90 3.58 7.38

10.0 9.038 7.8 9.19 3.89 12.3

Table 4. Parameters associated with the calculations and results.

7. Numerical methods
For a given value of a greater than the critical value 1.1576, integrations were initi-

ated at t = 0 in the Eulerian system as described in § 5; for a solid wall, the boundary
layer will eventually separate for all such cases (Degani et al. 1996). Generally, it was
found that suction should be started well in advance of the separation time tss for a
solid wall; otherwise, the imposed suction is not as effective in delaying separation.
A similar conclusion has been reached by Wang (1995) for flows at moderate Rer .
Unsteady separation is not located at the wall, but relatively far away from it on the
boundary-layer scale. Thus at times close to separation, asymptotically large controls
are needed at the wall to influence the forming separation. This was dramatically
illustrated through a numerical example by Van Dommelen (1990). For these reasons,
suction was started shortly after t = 0 at a time denoted by tv , given in table 4. The
values of the scale parameters in equations (5.1) were selected pragmatically, and
typical values of kx = 2.3 and kζ =0.8 were used (Degani et al. 1996). For cases a = 2,
3 and a = 4 the switch to the y variable was done at td =1 and td =0.2, respectively.

The majority of each calculation was done in the Eulerian formulation, which
is more efficient than in Lagrangian coordinates. However, as separation begins
to develop, the numerical solution process discussed in § 5 encounters convergence
problems and eventually fails at a time denoted here by tf . This behaviour has
been well-documented in other studies of two-dimensional unsteady separation
(Van Dommelen & Shen 1980, 1982; Cowley et al. 1990; Degani et al. 1996), and
indicates the need to switch to the Lagrangian method; this was done at a time to < tf ,
given in table 4. The value of to must be selected well in advance of tf so that the
Eulerian velocity field is free of the substantial numerical errors that develop near tf .
A number of mesh sizes and time steps were used as a check on the accuracy. With
increasing a separation develops more rapidly, necessitating the use of smaller time
steps. In a typical preliminary calculation, similar time steps were taken as in Degani
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et al. (1996), ranging from 
t =0.001 to 0.0001, with a (401 × 201) spatial mesh. All
cases presented here are based on a final (601 × 301) mesh and are believed to be grid
independent. In the Eulerian integration convergence at each time step was deemed
to have occurred when the relative difference of two successive iterates for u agreed
to within 10−6 at each mesh point.

In Lagrangian space, the mesh moves according to (6.18), and the new slot position
in Lagrangian space must be computed by solving equations (6.34) at each time step.
If the solution is known at time τ − 
τ (the previous time plane), the objective is to
advance the solution to the current time plane at τ . The x̂ field was first advanced by
approximating equation (6.29) at τ − 
τ using a simple forward difference for ∂x̂/∂τ

and central differences for the spatial derivatives. This is an explicit predictor phase
and is first-order accurate in 
τ . With estimates of x̂(α̂, β̂, τ ) in hand, ∂x̂/∂β̂ at β̂ = 0
was estimated at τ using a second-order sloping three-point difference. The first of
equations (6.34) was then approximated at τ − 
τ/2 using a simple average in τ for
the right-hand side and a central difference for ∂ξw/∂τ ; this produces an estimate of
ξw(α̂, τ ) which is second-order accurate in space and time. Similarly, the solution for
ηw(α̂, τ ) was advanced to the current time plane, although on the first pass ∂ηw/∂α̂

was estimated from the solution in the previous time plane. At this stage, estimates of
x̂, ξw and ηw are available, and the solution of equation (6.28) was advanced using a
Crank–Nicholson method similar to that discussed in § 5; the coefficients in equation
(6.28) were approximated with a simple average in τ and upwind differences were
used for ∂u/∂α̂ and ∂u/∂β̂ , depending on the sign of P and Q respectively (Doligalski
& Walker 1984). The resulting difference equations were then solved using a single
pass of a simple ADI scheme, in which the mesh was swept in the α̂- and then the
β̂-direction. At this point x̂(α̂, β̂, τ ) was refined by approximating equation (6.29) at
τ − 
τ/2 in a corrector phase that yields a second-order estimate of the x̂ field. Next
the solutions of (6.34) and then (6.28) were refined. The process was iterated until
successive estimates of u agreed to six significant figures at each point; typically, this
required three global iterations per step.

The position of the slot penetrates the Lagrangian domain with increasing τ and,
as an example, consider the situation shown in figure 9, where ξ̂ =h−1

x (ξ ), η̂ = h−1
y (η),

a =2, V = 1, to =4, i = 2 in (2.8), and the slot edges are at ξ =0, 2.90. The position
of the slot changes at later times as indicated. The derivatives ∂ξw/∂α̂ and ∂2ξw/∂α̂2

appear in equations (6.31)–(6.34), and the evolution of the corresponding physical
quantities ∂ξw/∂α and ∂2ξw/∂α2 are shown in figure 10 for the situation in figure 9.
At the initiation of the Lagrangian integration at τ = 0, ∂ξw/∂α = 1 and ∂2ξw/∂α2 = 0.
The subsequent distribution of ∂ξw/∂α is evidently continuous, but ∂2ξw/∂α2 develops
growing discontinuities at the slot edges. To confirm this behaviour, consider the
upstream edge of the slot at x0 and assume that xβ remains continuous there; it
follows from (2.8) and (6.23) that ∂ξw/∂τ � (α − x0)

i just inside the slot edge while
∂ξw/∂τ = 0 upstream of the slot. Consequently, for i = 2, a discontinuity in ∂2ξw/∂α2

occurs at α = x0, hence in the coefficients of the equations being numerically integrated.
This behaviour has potentially serious consequences if the integration continues for
an indefinite period of time. A lengthy Lagrangian calculation is also undesirable
from another standpoint. The position of the slot penetrates more deeply into the
Lagrangian domain with the passage of time and inevitably this will result in an
unacceptable skewness in the grid in Lagrangian space. The problem is manifested
as an instability that develops in C (see figure 8) in the form of a point-to-point
oscillation about a well-defined mean.

Finally in a lengthy Lagrangian calculation, fluid particles which were initially
close to one another eventually become separated by large distances; consequently
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Figure 9. Penetration of the slot into the Lagrangian domain for a typical case a = 2, i = 2,
t =4.0(0.1)4.3; the dotted lines are the trajectories of selected wall mesh points originally at
η = 0.
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Figure 10. Gradients of ξw for the case shown in figure 9 at the same times.

gradients of x̂ and û in (6.28)–(6.34) become large. The need for remeshing is signalled
by a progressive rise in the global iterations required for convergence at a time step.
The cure of these problems is periodical remeshing. The remeshing algorithm used
here is similar to that of Degani, Walker & Smith (1998); briefly summarized, the
continuity equation (6.35) is integrated along its characteristics to locate the new mesh
points in the previous mesh.

In order to test the present Lagrangian methods, Eulerian calculations were run for
specific cases up to a selected time tt . The mesh clustering location xc was initially cho-
sen at the vertex of the parabola x = 0 as in Degani et al. (1996). The computation was
then rerun by switching over to Lagrangian coordinates at an earlier time such as tt /2
and a comparison of the Eulerian and Lagrangian results for wall shear (which is belie-
ved to be most sensitive to error) was made. Outside the slot, agreement was typically
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O(10−8) or smaller, while inside differences approaching 10−4 were seen, especially for
cases with large suction magnitudes V . To enhance the comparison and gain confid-
ence in the Lagrangian algorithm, several modifications were made. First the clustering
location was shifted to the middle of the slot where streamwise variations in both
suction velocity and pressure gradient are large. A second improvement concerned
the remeshing process. The decision as to when to remesh is somewhat subjective. The
initial criterion adopted was to evaluate η̂w = h−1

y (ηw) and once the maximum value
exceeded 0.1, a remeshing was carried out. Depending on the value of V , remeshing is
needed on the order of every 100 time steps or more. There is a potential loss in accur-
acy at each remeshing and to minimize this error, two actions were taken. First the bi-
linear interpolation formula used by Degani et al. (1998) was replaced by a third-order
formula involving six points. Second, in order to reduce the number of remeshings, the
criterion for a remeshing was changed so that the maximum of η̂w had to exceed 0.5.
Since the maximum possible value of η̂w is 1, the penetration of the slot boundary in
Lagrangian space is fairly deep; setting the criterion at larger values than 0.5 produced
oscillations which were traced back to excessive mesh skewness in Lagrangian space.
All changes were beneficial such that both computations agreed closely over a common
time interval, even after several remeshes. Note that remeshing too close to the
singularity time ts is problematic and for this reason, the remeshing criterion was often
relaxed as t → ts . Finally, suction was found to significantly weaken the separation
process in some cases; such situations were encountered by Degani et al. (1998), where
separation was dramatically inhibited by a moving wall. These cases are difficult to
compute accurately since the computation continues for relatively long times in the
Lagrangian frame; indeed separation was often so weak that Eulerian computations
can be continued (with a coarse spatial mesh) through the separation event, illustrating
the problems in Eulerian computations. In these cases the separation location was
located approximately by a preliminary calculation. A refined computation was then
carried out with the cluster point in α switched to the suspected separation point.
This process was effective in accurately resolving the cases of ‘weak separation’.

8. Calculated results
Computations were carried out for various combinations of slot widths, slot

locations and suction characteristics. For a solid wall, a separation singularity occurs
at times tss (listed in table 4 as ts for V = 0) at locations xs computed by Degani et al.
(1996) and to be an effective separation control, suction must be applied near these
locations. However separation can then occur downstream of the slot, and thus the
slot should extend a reasonable length along the upper surface. After considerable
experimentation (Kim 1999), the leading edge of the slot was selected at x0 = 0. For
most calculations reported here, the downstream edge of the slot was at x1 = 2.90 and
i = 3 in (2.8).

Results and parameters for the present calculations are listed in table 4. All cases
considered ultimately terminate in a singularity, but it is evident that separation
always is delayed to a later time and shifted downstream (compared to the solid
wall). The unsteady separation locations are slightly downstream of those for the
steady case in table 3 (cf. Van Dommelen & Shen 1980). As V increases, substantial
increases in ts occur as shown in figure 11: here, the separation time, scaled with
respect to the solid-wall value tss , is plotted versus the suction strength for the three
values of a. The broken lines are spline fits to the data and are presented only as a
visual aid to distinguish clearly different values of a. The open symbols indicate cases
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Figure 11. Calculated separation retardation by suction for a = 2, 3, and 4 versus V .
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Figure 12. Instantaneous streamlines in the boundary layer for a = 4 and V =0.5
at (a) t = 0.5, (b) t = 1.0, (c) t = 1.5, (d) t = 1.7.

in which the separation occurs above the suction slot, and solid ones behind the slot.
The drop-off in effectiveness of suction at large V is related to the separation location
moving downstream to regions where suction is weaker and eventually disappears.

The flow development for a typical case when the suction is weak is shown in
figure 12. Note that this and subsequent figures are not at a realistic Reynolds
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Figure 13. Instantaneous streamlines in the boundary layer for a = 4 and V = 6
at (a) t = 2.0, (b) t = 4.0, (c) t = 7.0, (d) t = 7.9.

number and show magnified instantaneous streamlines in a thin layer next to the
parabola. The adverse pressure gradient for a =4 is relatively severe and separation
takes place for a solid wall near the leading vertex at xs = 0.637. As indicated in table 4,
separation occurs for V = 0.5 a little later and a little further downstream, but the
modification of the process is only slight. In contrast, when the suction strength is
increased, the evolution of a recirculation zone is delayed substantially as shown in
figure 13; a recirculating eddy is not evident until just before t = 7 in figure 13(c).
Separation eventually occurs at ts = 7.9, which is about 5 times longer than for a
solid wall. Now separation is suppressed above the slot but occurs on the solid
wall downstream as shown in figure 13(d). This suggests that lengthening the slot
downstream will produce a greater separation delay. To verify this point, calculations
were also done with the slot end at x1 = 4, and further delays proved possible provided
that V was adjusted. If, for example, the same V is used, separation can actually occur
above the slot at an earlier time. This happens because the peak in suction velocity is
shifted downstream, resulting in a weakening of local suction near the leading edge,
thereby permitting separation there. Calculated results for a = 4, V =14 are shown
in figure 14 for x1 = 4. A singularity eventually occurs at xs = 5.85 (downstream of
the slot) at t = 17.8. Evidently, additional increases in the slot length could be used
to further delay separation.
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Figure 14. Instantaneous streamlines for a =4, x1 = 4 and V = 14 at ts = 17.8.

Lastly, although the bulk of the results reported here used the suction distribution
in (2.8) with i = 3, other calculations were done for other values of i but a qualitatively
significant effect was not found. For example, for CQ = 7.38, a = 4, which is a case
shown in table 4 with i =3, V must be altered from 6 to 5.1 for i = 2 to maintain
the same suction volume. In this case, separation eventually occurred at ts =8.54 and
xs = 3.73, which are close to the values in table 4.

9. Concluding remarks
By extending the Lagrangian approach for computing unsteady separation to

include a floating boundary, accurate numerical determination of unsteady separation
in the presence of suction was possible. The present results show that the boundary-
layer separation at high Re can be substantially inhibited using suction over a small
slot near the leading edge of a thin airfoil. The physical suction velocity is O(Rer

−1/2),
and consequently the mass flow rates involved are not substantial. As shown in figure
11, for a slot occupying the first 3.3% of the chord (for a Joukowsky airfoil with
thickness ratio 0.12), delays in separation of five to ten times are possible. Further
delays are possible by lengthening the slot. This is consistent with the Navier–Stokes
calculations of Wang (1995) for a Reynolds number based on chord length of 5000; the
slot extended over the first 20% of the chord of a NACA 0012 airfoil, and it was found
that separation from the leading edge could be suppressed entirely using a suction
volume CQ = 28 at a = 5.88 (30◦). However, the applications of potential interest in
this study are associated with rotorcraft and brief manoeuvres of combat aircraft.
Suppression of leading-edge separation is desirable but inhibiting and weakening the
process and shifting it downstream are also useful when the slot size or the volumetric
flow rates involved in suction are a concern. Lack of space has been cited for the
failure to extend the leading-edge suction on an F86-F to later fighters that had
thinner wings (Flatt 1961), and similar concerns may apply to rotorcraft. The results
obtained show that in the transient case, surprisingly large effects on separation,
and consequently on aerodynamic forces, can be obtained by only slight amounts of
suction through small slots, especially for brief intervals of time. For example, at a
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scaled effective angle of attack a = 2, a scaled suction coefficient of only 0.62 almost
doubles both the separation time and its distance away from the nose. This amount
of suction is much smaller than the minimum amount of suction required to avoid
separation completely, 2.34, which would also need to be applied by means of the
lengthy and awkward distribution of figure 4.

During the final edits of this paper, J.D.A. Walker unexpectedly passed away. As
a fluid dynamicist who deeply believed in the value of theoretical analysis, and the
driving force behind this paper, he will be very much missed by us all.

The Lehigh authors would like to thank the Army Research Office for support
under Grant No. DAAD19-99-1-0244, and L. v.D. thanks NASA support under
Grant No. NAG1-01057.
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